4月 26, 2024

FUTSALNET

日本からの最新ニュースと特集:ビジネス、政治、解説文化、ライフ&スタイル、エンターテインメント、スポーツ。

クールな赤色矮星を周回する巨大なフワフワした惑星

クールな赤色矮星を周回する巨大なフワフワした惑星

赤色矮星を周回する非常に薄いガス惑星の芸術的な印象。 巨大ガス惑星 [right] 冷たい赤色矮星の軌道上で検出されたマシュマロの密度 [left] NSF NOIRLab のプログラムであるキット ピーク国立天文台の 3.5 メートルの WIYN 望遠鏡に搭載された、NASA が資金提供した NEID 放射速度計によるものです。 TOI-3757 b と呼ばれるこの惑星は、このタイプの星の周りでこれまでに発見された中で最も薄い巨大ガス惑星です。 クレジット: NOIRLab/NSF/AURA/J. da Silva/Spaceengine/M. Zamani

国立天文台のキット ピーク望遠鏡は、これを決定するのに役立ちます。[{” attribute=””>Jupiter-like Planet is the lowest-density gas giant ever detected around a red dwarf.

A gas giant exoplanet with the density of a marshmallow has been detected in orbit around a cool red dwarf star. A suite of astronomical instruments was used to make the observations, including the NASA-funded NEID radial-velocity instrument on the WIYN 3.5-meter Telescope at Kitt Peak National Observatory, a Program of NSF’s NOIRLab. Named TOI-3757 b, the exoplanet is the fluffiest gas giant planet ever discovered around this type of star.

Using the WIYN 3.5-meter Telescope at Kitt Peak National Observatory in Arizona, astronomers have observed an unusual Jupiter-like planet in orbit around a cool red dwarf star. Located in the constellation of Auriga the Charioteer around 580 light-years from Earth, this planet, identified as TOI-3757 b, is the lowest-density planet ever detected around a red dwarf star and is estimated to have an average density akin to that of a marshmallow.

Red dwarf stars are the smallest and dimmest members of so-called main-sequence stars — stars that convert hydrogen into helium in their cores at a steady rate. Although they are “cool” compared to stars like our Sun, red dwarf stars can be extremely active and erupt with powerful flares. This can strip orbiting planets of their atmospheres, making this star system a seemingly inhospitable location to form such a gossamer planet.

カーネギー科学研究所の地球惑星研究所の研究者であり、論文の筆頭著者である Shubham Kanodia 占星術ジャーナルに。 これまでのところ、これはドップラー調査の小さなサンプルによってのみ見られており、通常、これらの赤色矮星から遠く離れた巨大な惑星を発見しています. これまで、近くのガス惑星を確実に見つけるのに十分な量の惑星のサンプルはありませんでした。」

TOI-3757 b を取り巻く謎はまだ解明されていませんが、その主なものは、ガス巨大惑星が赤色矮星、特に低密度惑星の周りにどのように形成されたのかです。 しかし、Kanodia チームは、この謎を解決できる可能性があると考えています。

WIYN 望遠鏡 3.5m

NSF NOIRLab のプログラムであるキット ピーク国立天文台 (KPNO) の地球から、3.5 メートルのウィスコンシン – インディアナ – イェール – ノワールラブ (WIYN) 望遠鏡が、天の川が地平線からこぼれ落ちる様子を観察しているように見えます。 自然現象である赤みを帯びた大気のまぶしさも地平線を彩ります。 KPNO はトホノ オッダム ネーションのアリゾナ ソノラ砂漠に位置し、天の川の平面の一部のこの明確なビューは、かすかな天体を見るために必要なこの環境の好条件を示しています。 低レベルの光害、20 度の暗い空、乾燥した気象条件などのこれらの条件により、WIYN コンソーシアムの研究者は、WIYN 3.5 を使用して、銀河、星雲、太陽系外惑星、およびその他の多くの天体ターゲットを観測し続けることができました。メートル望遠鏡とその姉妹品である WIYN 0.9 メートル望遠鏡。 クレジット: KPNO/NOIRLab/NSF/AURA/R. Sparks

彼らは、TOI-3757 b の非常に低い密度が 2 つの要因の結果である可能性があることを示唆しています。 1つ目は、惑星の岩のコアに関連しています。 ガス巨人は、地球の質量の約 10 倍の質量を持つ巨大な岩石のコアとして始まり、その時点で大量の近くのガスを急速に引き込み、今日見られるガス巨人を形成すると考えられています。 TOI-3757b は、ガス巨星を持つ他の M 型矮星よりも重元素の存在量が少なく、これが岩石コアの形成をより遅くし、ガス蓄積の開始を遅らせ、惑星全体の密度に影響を与えた可能性があります。

READ  望遠鏡チームが力を合わせてタイタンの奇妙な嵐を予測

2 つ目の要因は、わずかに楕円形であると暫定的に考えられている惑星の軌道である可能性があります。 他の時よりも星に近づく時があり、その結果、惑星の大気が膨張する原因となるかなりの過剰な熱が発生します.

太陽系外惑星調査のための NASA のトランジット衛星 ([{” attribute=””>TESS) initially spotted the planet. Kanodia’s team then made follow-up observations using ground-based instruments, including NEID and NESSI (NN-EXPLORE Exoplanet Stellar Speckle Imager), both housed at the WIYN 3.5-meter Telescope; the Habitable-zone Planet Finder (HPF) on the Hobby-Eberly Telescope; and the Red Buttes Observatory (RBO) in Wyoming.

TESS surveyed the crossing of this planet TOI-3757 b in front of its star, which allowed astronomers to calculate the planet’s diameter to be about 150,000 kilometers (100,000 miles) or about just slightly larger than that of Jupiter. The planet finishes one complete orbit around its host star in just 3.5 days, 25 times less than the closest planet in our Solar System — Mercury — which takes about 88 days to do so.

The astronomers then used NEID and HPF to measure the star’s apparent motion along the line of sight, also known as its radial velocity. These measurements provided the planet’s mass, which was calculated to be about one-quarter that of Jupiter, or about 85 times the mass of the Earth. Knowing the size and the mass allowed Kanodia’s team to calculate TOI-3757 b’s average density as being 0.27 grams per cubic centimeter (about 17 grams per cubic feet), which would make it less than half the density of Saturn (the lowest-density planet in the Solar System), about one quarter the density of water (meaning it would float if placed in a giant bathtub filled with water), or in fact, similar in density to a marshmallow.

“Potential future observations of the atmosphere of this planet using NASA’s new James Webb Space Telescope could help shed light on its puffy nature,” says Jessica Libby-Roberts, a postdoctoral researcher at Pennsylvania State University and the second author on this paper.

READ  Artemis I: エンジンの問題により本日の打ち上げは削除されました

“Finding more such systems with giant planets — which were once theorized to be extremely rare around red dwarfs — is part of our goal to understand how planets form,” says Kanodia.

The discovery highlights the importance of NEID in its ability to confirm some of the candidate exoplanets currently being discovered by NASA’s TESS mission, providing important targets for the new James Webb Space Telescope (JWST) to follow up on and begin characterizing their atmospheres. This will in turn inform astronomers what the planets are made of and how they formed and, for potentially habitable rocky worlds, whether they might be able to support life.

Reference: “TOI-3757 b: A low-density gas giant orbiting a solar-metallicity M dwarf” by Shubham Kanodia, Jessica Libby-Roberts, Caleb I. Cañas, Joe P. Ninan, Suvrath Mahadevan, Gudmundur Stefansson, Andrea S. J. Lin, Sinclaire Jones, Andrew Monson, Brock A. Parker, Henry A. Kobulnicky, Tera N. Swaby, Luke Powers, Corey Beard, Chad F. Bender, Cullen H. Blake, William D. Cochran, Jiayin Dong, Scott A. Diddams, Connor Fredrick, Arvind F. Gupta, Samuel Halverson, Fred Hearty, Sarah E. Logsdon, Andrew J. Metcalf, Michael W. McElwain, Caroline Morley, Jayadev Rajagopal, Lawrence W. Ramsey, Paul Robertson, Arpita Roy, Christian Schwab, Ryan C. Terrien, John Wisniewski and Jason T. Wright, 5 August 2022, The Astronomical Journal.
DOI: 10.3847/1538-3881/ac7c20